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1. INTRODUCTION AND SUMMARY OF RESULTS

It is of considerable interest, both for theoretical purposes and for the
applications, to obtain information about the location of the eigenvalues and
eigenvectors of a matrix. There is an extensive literature on the location of
the eigenvalues. (See, for example, the survey by Householder [11].) Some­
what less is known about the location of eigenvectors.

One important result is the Perron theorem which states that a positive
matrix has a positive eigenvector belonging to a positive eigenvalue (Perron
[17]; Frobenius [6, 7]). This has given rise to a considerable literature
(see Brauer [4], Seneta [20]). Of course, many theorems on the effect of
perturbations give information on the eigenvectors of a matrix close to a
given matrix (Kato [14]).

Many results on the eigenvalues and eigenvectors of matrices can be
extended to infinite-dimensional spaces. We may mention, for example,
the Jentzsch theorem on integral operators with positive kernel [12], and its
generalizations. (See Ostrowski [16], Krein and Rutman [15].)

In this paper we present several results on the location of the eigenvalues
and eigenvectors of complex matrices, together with some extensions to
infinite-dimensional sequence spaces. For example, we can obtain a result
of the form (Theorem 12):

Let C = (Cjk), 0 ~ j, k ~ N, be a matrix such that

* At the time of Mark Gurari's death on May 8, 1952, he was in the Department of
Theoretical Physics at the University of Liverpool. A manuscript in German on the above
subject was found among his papers. We have prepared this paper from his manuscript,
extended and simplified some results, and put the material in relation to other published
work. In the manuscript the author refers to a uniqueness theorem related to Theorem 12,
and to analogs for integral equations. Unfortunately, these results are apparently lost.
Paul C. Rosenbloom, Department of Mathematics, Teachers College, Columbia University,
New York, New York 10027.
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and set
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a

If 0 < B:::;;; 1T/8 and

a < F(b, 8), (I)

then C has an eigenvector Z in the set

S(38): Zo = 1, I arg Zj I < 38 for 0 <j:::;;; N.

Our proof gives F(b, 8) = sin(4B) cos(8/2)jb. We have not tried to obtain
a very sharp result, but have been concerned in getting an F which is explicit
and easy to compute, and which lends itself to extension to the infinite­
dimensional case.

If a = 0, then Cjk = °for jk =1= 0, so that we may call C a border matrix.
Condition (1) says that C has a dominant border. While there is a considerable
literature on matrices with a dominant main diagonal, little seems to have
been done on matrices of the above type.

If C is a border matrix, then we may easily show that:

(a) C has the eigenvalue ,\ = ° with multiplicity N - 1, and the
corresponding (N - I)-dimensional eigenspace defined by

Zo = 0,

(b) The roots of the quadratic equation

N

d = L COkCkO ,
k=l

are also eigenvalues, and have the eigenvectors

Zo = '\, Zj = CjO for j > 0.

A border matrix is also a matrix of rank at most 2, but for our purposes
the above representation in a particular coordinate system seems more
convenient.

By applying known results in perturbation theory (see Kato [14], Rosen­
bloom[18]), we can also obtain sufficient conditions for the uniqueness of an
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eigenvalue in a specified region, and information on the location of the
corresponding eigenvector. For instance, we obtain a result of the form: If

and

I t CjkCkO I~ I Coo I I CjO I 0,
k~l

for j;?; 0,

for allj, and d # 0,

and

o< B(d/C~o),

then C has a unique eigenvalue in the half-plane R(ll/COO) ;?; ~. and a corre­
sponding eigenvector x in the region

for j;?; 0,
where

°~ (X < '!T/2.

Here Band B1 are explicitly computable functions of dlC~o .
Of course, we can apply perturbation theory to obtain similar results for

nearly positive matrices. Combining perturbation theory with the results of
Ostrowski [16] (see also Birkhoff [2], Hopf [10]), we obtain results of the
type:

If Cjk = rjk exp(i8jk) and rjk > 0, I 8jk I ~ 8 < '!T/2 for j, k ;?; 0, and
°< y < '!T/2, and

2 sin(8/2) ~ B2 sin y,

then C has an eigenvector in 8(y).
Here B2 is an easily computable function of the rjk .

IfR= (rjk) is positive, and AR is the positive eigenvalue of R, then there is
a certain constant NR < 1 such that for NRAR < r < AR and 8 sufficiently
small, the matrix C has a unique eigenvalue in I A I ;?; r. There will be an
eigenvector of C, belonging to this eigenvalue, in the region 8(y). Also C has
no other eigenvector in 8(y). For N R we can use Ostrowski's sharpening of
Birkholf's bound. Again all bounds are computable from the data R, r,
and y.

If R is nonnegative but some power R'" is positive, so that R belongs to
the class of power-positive matrices studied by Brauer [3], then we can obtain
similar results.

In many applications we are dealing with large matrices, or matrices
depending on parameters, or families of matrices. It is then important to find
comparatively simple functions of the elements, in terms of which we can
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obtain the desired information about the eigenvalues and eigenvectors.
Thus the practical significance of our results is perhaps the identification of
such computable functions of the data, and the orders of magnitude of the
bounds we obtain.

We note, finally, that the approaches of Kantorovich et al. [13], and
Krein and Rutman [15], may lend themselves to extensions to infinite­
dimensional spaces.

2. THE PERRON THEOREM

We begin by recalling the Perron theorem. 1 A matrix C = (CnJ, I j,
k n, is called nonnegative, C > 0, jf Cjk > 0 for all j, k, and is called
positive, C > 0, if Cn, > 0 for all j, k. We defined similarly the concepts of
nonnegative and positive vectors.

PERRON'S THEOREM [17]. 1f C 0, then C has a positive eigenvector
belonging to a positive eigenvalue A.

(a) If f1- is any other eigenvalue, then I f1- I < A.

(b) The eigenspace of A is one-dimensional.

(c) There is no other eigenvalue which has a nonnegative eigenvector.

We shall denote this eigenvalue by I\C' It can also be characterized in
terms of a variational problem. For any x > 0, let

(2)

Then the maximum of r(x) for x > 0 and

x max I Xj!
]

is attained, and this maximum is Ac .

Frobenius [6, 7] extended Perron's theorem to certain classes of non­
negative matrices and characterized those nonnegative matrices which have
more than one eigenvalue of maximum modulus. The extension is especially
simple for the class of matrices introduced by Brauer [3]. He calls a matrix C
power-positive if some power Cm is positive.

1 Editor's note: In the original manuscript. the Perron theorem is rediscovered. The
proof is similar to the one given in Bellman [II. and ascribed to unpublished work of
Bohnenblust. We have presented Gurari's argument in a way which brings out some
additional points of interest.
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THEOREM 1. If C ?:: °and cm > 0, then the maximum of T(X) for x > 0,
I[ x II = 1, is attained. The maximum is a positive eigenvalue Ac, and is
attained for a positive eigenvector gbelonging to Ac .

Proof We note first that T(X) may be characterized as the maximum
of the real numbers T such that

Cx - TX ~ 0.

Since Cx - T(X)X ~ °and C ~ 0, we infer that

C(CX - T(X)X) ~ 0,
that is,

so that
T(CX) ~ T(X).

It follows that
T(CmX) ~ T(X).

For any positive matrix A, we define

y(A) = min An,; .
I,k

It is then trivial that if y ~ °and A > 0, and u = Ay, then

min Uj ~ y(A) II y II.

We note also that for any matrix A, we have

II A II = max II A II = max L IA ik I.
Ilxll~l j

Now let y = Cmx, Z = ylll y II. Then we have

min Yi ~ y(cm)ll x II
and

so that
min Zj ~ y(cm)/11 Cm II

and
T(Z) = T(Y) ~ T(X).

(3)

Therefore the supremum of T(X) on the set of x ~ 0, II x [I = 1, is the same
as its supremum on the subset where minj Xi ?:: y(Cm)/11 Cm II. Since T is
continuous on this subset, it attains its maximum A there at some vector f
If € = II cg - At II > °and y = cm(ct - At), then min Yj ~ y(Cm)€ > 0.
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But since y .~~ C(C"'g) - Itcn'g, this implies that T(Ciiit) :;> It, which contra­
dicts the definition of It. Hence E 0 and cg Itt. Thus all g :> °for
which T(g) •..• It are eigenvectors of C.

The function
fL(C) = y(C)!.] C I,

seems to be a natural measure of the positivity of a matrix and arises
frequently in the sequel. In the course of the argument, we proved

COROLLARY lao If C ~ 0 and CUt> 0, and g is the positive unit vector
which maximizes T, then minj gj ~ fL(Crn).

For the sake of completeness we prove that properties (a)-(c) in Perron's
theorem hold also for nonnegative power-positive matrices. Let C' be the
transpose of C, and let TJ be a positive unit eigenvector belonging to A. If fL
is any eigenvalue of C other than ,\ and z is an eigenvector belonging to fL,
let I z I be the vector with the components I Zj I, 1 ~ j ~ n. Let A = crn.
We have

and

It follows that
! fL IIJI [ Z 1~ A I Z i

and
A I Z I -- I fL I'" [ Z I # 0

unless z is a scalar multiple of a nonnegative vector, and then fL must also
be nonnegative. Consequently, except in this case, we have

TJ • (A I z [ - I fL III! i z I) ::> 0,
that is,

so that
I fL I < '\.

In the exceptional case we may assume z ~ 0, fL ~ 0. Then we obtain

o = TJ . (Cz - fLZ) = (,\ - fL)(TJ . z),

and therefore fL = '\.

Finally if Z is any eigenvector of C belonging to '\, let

u = z - (TJ • z) g,
TJ·g

so that
Cu = '\u, TJ'U = o.
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If z is not a scalar multiple of g, then u =1= 0. If u were a scalar multiple
of a nonnegative vector, then I TJ • u I would be positive. Hence we find that

and therefore

A I u I - Am I u I ~ 0, A I u I - Am I u I =1= 0,

TJ • (A I u I - Am I u I) > 0.

But since TJ • A I u I = Am I u I, we have arrived at a contradiction. Therefore
u = 0, and z is a scalar multiple of g.

The same argument shows that Acan be characterized by another extremal
problem.

THEOREM 2. IfC ~ °and cm > °andfor x> °
(4)

then
A = min a(x) = a(O.

x>o

Proof Let 1 be the vector with all components equal to 1. It is sufficient
to look for the minimum of a on the set 81 of all x > °such that II x II = I
and a(x) ~ a(I). The argument of Theorem 1 shows that a(Cmx) ~ a(Cx) ~
a(x), and that if a(cmx ) ~ a(I), x > 0, and II x II = 1, then

Xj ~ y(cm)/a(l) for allj. (5)

Thus it suffices to look for the minimum of a on the subset 82 of those x in 81

which satisfy (5). Again if the minimum is attained at v E 8 2 and
a(v)v -- Cv =1= 0, then a(Cmv) < a(v), which contradicts the minimum
property of v.

We note

COROLLARY 2a. If C ~ °and Cm > 0, then

and
min L CiI, ~ Ac ~ m;:tx L CiI, = II C ii·

i k } k

Proof. The first estimate follows from Ac ~ T(O(;»), where 0(;) is the
vector with components Ojk' The second follows from T(I) ~ Ac ~ a(I).
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If T* and a* are the functions corresponding to T and a for the transposed
matrix C', then we have the inequalities

T(X) ~ a*(y) and a(x) ~ .*(y)

for any positive x and y.
We wish to sharpen property (c) of Perron's theorem.

THEOREM 3. If C ~ °and Co, > 0, and

Cz = fLz, Zl 0= 1, j arg Zj I ~ 7T/2 for j > 1,

then fL = ..\ and z > 0.

Proof Let Yj be the vector such that

Yj > 0, II Yj II = 1, and

By property (b), the conclusion follows if fL =..\. If fL =1='\, then from
Yj . Cz = ..\(Yj . z) we obtain Yj . z = 0. But

n

R(Yj • z) = Yj1Z1 + L YjjR(zj) > 0,
2

which is a contradiction.
Following Ostrowski [16], if y > °and x is any real vector, we define

m(x; y) and M(x; y) as the upper and lower bounds, respectively, ofm and M
such that

my ~ x ~ My.
Then we have

.(x) = m(Cx; x),

min Xj = m(..\; 1),

a(x) = M(Cx; x),

max Xj = M(x; 1).

Birkhoff [2] introduced into the study of positive matrices the projective
metric

B(x, y) = log(M(x; y)/m(x; y)) (x,y > 0)

of Hilbert [8] (see also Busemann and Kelley [5]). If C is a positive matrix,
then we have

max B(Cx, Cy) = log Te = LIe,
X,y>O

where
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(Ostrowski [16, p. 87]), and

T~2 - 1
max 8(Cx, Cy)/8(x, y) = = Nc

T~2 + 1

(Birkhoff [2, Lemma 1; p. 221]).
We can use these relations to sharpen the considerations of Theorem 1.

If Cm > 0 and x > 0 and T = T(cm), then

If M = M(CnH1X - rex) cmx; Cmx) and 'YJ is the positive eigenvector of C'
as in the proof of Theorem 3, then we have

so that, with A= Ac ,

and
.\ - rex) :'( M :'( Tm(CmHx - rex) cmx; Cmx).

We infer that

which yields
r(Cmx) :::;; rex) + T-l(.\ - rex»~,

or
.\ - r(Cmx) :::;; (1 - T-l)(,\ - rex»~.

If v = mq + r, 0 :::;; r :::;; m, then it follows that

,\ - r(Cvx) :::;; A - r(Cmqx)

:::;; (1 - T-l)q(.\ - rex»~,

so that
lim r(CVx ) = '\.
V---7OCJ

Similarly, we find that

a(Cmx) - A :'( (1 - T-l)(a(x) - .\).

(6)

(7)

In the course of the proofs of Theorems 1 and 2, we proved T(CX) ~ T(X),
a(Cx) :S; a(x), which imply that

m-l

8(Cmx; x) :::;; L 8(Ck+1X; CkX)
k~O

:::;; m8(Cx; x).
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But if t is the positive eigenvector of C such that il t l J and N N(cm),
then

B(x; t) ,~ B(x: ClJlx ) + B(Cmx, t)

<;; B(x, ClJlx ) .+- NB(x, t)

so that
B(x, t) ~ (l - N)-l B(x, ClJlx ).

If x is normalized so that m(x; t) M(x; t) = J, that is

log M(x; t) = B(x, t)j2 = (Jj2,

then
exp( -(Jj2)t ~ x ~ exp(Bj2)t,

and

where

II x - t II ~ (exp(Bj2) - 1) II til
~ (a(x)jT(X)Y' - J,

k = m(l - N)-lj2.

(8)

Thus we can estimate the distance from x to t in terms of the ratio
a(x)jT(X).

THEOREM 4. If C ~ °and em > °and x > 0, then

lim a(CVx ) ~= lim T(CVX) = Ac .
v~~ v~~

and we have inequalities (6) and (7) on the rates of convergence of u(CVx) and
T(CVx) to Ac , and (8) on the distance from x to the positive eigenvector.

In the following we shall continue to denote by t and r; the positive
eigenvectors of C and C', respectively. If we set

t"r;=J,

then we may still replace t and r; by at and a-1r;, respecitvely, where a is any
positive number. It will be convenient to postpone further normalization
of t and r; until later.

The transformation C' may be considered as the adjoint of C, operating
on the dual space with the norm

For future use we give the following modification of (8):
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LEMMA 1. If X > 0 and (}(x, 0 ~ E, then

II x - ('YJ . x)g II ~ (e< - 1) I 'YJ . x III gil
<; (e" - 1) II 'YJ III II g 1111 x Ii·

Proof Let z = x - (17 . x)g. We have

M(x; g) = ('YJ . x) + M(z; g),

m(x; g) = (17 . x) + m(z; g),

and m(z; 0 ~ TJ • z = 0 ~ M(z; g).
Furthermore, we have M(x; g) <; e<m(x; g). It follows that

M(z; g) - m(z; g) ~ M(z; g) - e<m(z, g) ~ (e< - I)(TJ . x).

Since
II z II ~ max(M(z; g), -m(z; mil gil,

we obtain
II z II ~ (e< - 1)(17 . x) II gil.

The following estimates are also useful.

LEMMA 2.

II g1111 TJ III ~ 1//-t(G),

II g I1II 'YJ 111 ~ exp«l - Nd-1 (}(Gl, 1»,
m('YJ; 1) ~ /-t(G) 1117 IiI'

Proof Since

1 = 17 . g ~ meg; 1) II 17 III ,

the first estimate follows from Corollary Ia. An alternative estimate of
II gII/m(g; 1) = exp«(}(g; I) follows from

B(g; 1) ~ B(g, Gl) + B(CI; 1)

~ Nc(}(g, 1) + B(Gl, 1),

and this yields the second inequality. The third follows from

which implies
y(G) 1117111 <; Acm(7]; 1)

<; II C II m(17; 1).
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We note that B(Cl,l) log(a(I)IT(I)), and a(1)IT(I) is the ratio of the
bounds for Ac given in Corollary 2a.

THEOREM 5. If Yj . Z cc= 0, and C 0, then

C'z (341 fL(C»)(AcNcYI z i~.

Remark. Ostrowski gives bounds which imply that II CVz ii == O«AcNc)'),
but do not specify the constant implicit in this result.

Proof If we set m = m(~; 1), then from

-(II z 1[lm)~ ~ z ~ 01 z Illm)~

we obtain

M(z; D ~ Ii z Iilm ~ 01 z il/(fL(C) Ii ~ II)) = a,

and

If k > I, then we have

x = ka~ + z > 0

and
M(x; ~) ~ (k + l)a, m(x; ~) ? (k - l)a,

so that

Now we obtain

From

and

B(x; D ~ (k + I)j(k - I) = t.

Yj • CVz = 0

we infer, by Lemma I, that

II CVz II ~ (e€ - 1) kaAcv II ~ II.

But € < t, so that we have

If we now choose k = 5, we obtain the theorem.
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3. PERTURBATION OF SIMPLE EIGENVALUES AND EIGENVECTORS

In this section we give results which we need on the perturbation of simple
eigenvalues and eigenvectors. While these results are implicit, in principle,
in the available literature, it is hard to find there explicit quantitative results.
Rosenbloom [18] and Kato [14] have obtained results of the kind we want
by quite different methods. Since their estimates are expressed in terms of
different data, it is difficult to compare them. We shall work out here various
estimates using Kato's method, based on the analysis of the resolvent (see
Hille and Phillips [9]). This approach has the advantage that it can easily
be extended to eigenvalues of higher multiplicity.

Suppose that C is a linear transformation of a complex Banach space X
into itself, and let

R(A; C) =0= (A -- C)-l

be the resolvent of C. We say that an eigenvalue Ao of C is simple if it is also
an eigenvalue of the conjugate transformation C* on the conjugate space X*,
the null-spaces of C - Ao and C* - Ao are one-dimensional, and Ao is an
isolated point of the spectrum of C. It follows that R(A; C) has a pole of
order I at Ao and that its residue there is a projection Po onto the null-space
of C - Ao , and

Let X o and X o* be eigenvectors of C and C*, respectively, such that
xo*(xo) ~= 1. Thus Po can be expressed in the form

that is,
for all x E X.

If Q is a domain with rectifiable boundary containing no eigenvalues on its
boundary, then

P = -2
1

. i R(A; C) dA
1Tl JeD

is a projection onto the union of the eigenspaces corresponding to the
portion of the spectrum of C contained in Q. In particular, if Q contains Ao
and no other point of the spectrum of C, then P = Po .

Suppose Q is such a domain, and let

M = max 11 R(A; C)I!.
Ac?D

If U is a bounded linear transformation of X into itself, then we have

R(A; C + U) = R(A; C)(1 - UR(A; C»-l
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R(A; C+ V) -- R(A; C) R(A; C + V) VR(A; C),

by Hille and Phillips [9, p. 196-197].
Hence if

i! VII < 0 < 11M,

then we obtain

II R(A; C + V)II < MI(1 - oM)

and
II R(A; C+ V) - R(A; C)II < M2ol(1 - oM).

If

P u = -2
1

.J R(A; C + V) d"A,
7Tl an

then
!I P u - Po II < BM281(1 - 8M),

where B = (length of oQ)/27T. Consequently, if

8 < 1/(M + BM2),

then we obtain
[I Pu - Po I! < 1.

By Kato [14, p. 33], this implies that the rank of Pu is one-dimensional,
so that C + U has a unique eigenvalue A(U) in Q, and

PuX = xu*(x) Xu ,

for all X E X, where Xu and xu* are the eigenvectors of C + U and (C + U)*,
respectively. Furthermore, we have

(C + V)Pu = Pu(C + V) = A(V)Pu .

But the formula

(A(U) - Ao) P u = -2
1

. J (A - Ao) R(A; C + U) dA
7Tl an

= -2
1

.J (A - Ao)(R(A; C + U) - R(A; C)) dA
7Tl an

implies that

I A(V) - Ao III P(V)II < dBM281(1 - 8M)

<dM(l + BM)8,
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where

d = max I A - Ao I
:lEOQ

and
I A(U) - Ao I <; dM(l + BM)S

since
II P(U)!I ;;::; 1.

Furthermore, we have

Similarly, we can show that

II xo*(xu) xu* - xo* II :::;; M(l + BM)S II xo* II·

We summarize these results in

THEOREM 6. Suppose that C is a linear transformation of X into itself,
that Ao is a simple eigenvalue ofC, that Xoand Xo* are eigenvectors ofC and C*,
respectively, belonging to Ao such that X o*(xo) = 1, that Q is a domain with
boundary 8Q of length 27TB containing Ao and no other points of the spectrum
of C, and that

M = max [I R(A; C)II.
:lE(jQ

Then for
II UII :::;; S < 1/(M + BM2) = 11K,

the transformation C + U has a unique eigenvalue A(U) in Q, which is simple.
This eigenvalue satisfies

I A(U) - Ao I :::;; KdS,
where

d = max I A - Ao I·
:lE(jQ

There are eigenvectors ofC + U and (C + U)*, respectively, belonging to A(U)
in the spheres

II x - Xo II <; KS II Xo II and II x* - xo* II :::;; KS II xo* II· (9)

We remark that we can always normalize X o and xo* so that II xo* II =

II Xo II =, II Po W/2•

By minor modifications of the above argument, we can obtain similar
results for unbounded regions Q. For example, we have
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COROLLARY 6a. Suppose that C is a bounded linear transformation on X
to itself, and ,10 , X o , and Xo* are as above. Suppose also that there are no other
points of the spectrum of C in I AI ;? r, where r < [ ,10 I, and that

Then for
II Uil ~ 0 < 1/(M -:- rM2) =c 11K

the transformation C + U has a unique eigenvalue A(U) in I ,\ I :;?: r, which is
simple. It satisfies

There are eigenvectors of C + U and (C + U)*, respectively, belonging to
'\(U) and satisfying (9).

For the proof, we take Q to be the annulus r < ! z! < R, and let R -+ 00.

We note that
en

R(A; C) c=.-' I ClINcH
o

= ,1-1 -:- CA-2 + 0(,\-3)

for I AI > I '\0 [. This implies that

P u - Po = - 2
1

--; r (R('\; C -:- U) - R('\, U)) d'\
Trl'r

and

(A(U) - ,10) P u = U - 2
1

--; r (A - Ao)(R(A; C + U) - R(A, U)) dA,
Trl·r

where r is the circle I AI = r. The rest of the reasoning is as before.
Another variant of the argument yields

COROLLARY 6b. Let a > °and suppose that

M j = sup I A Ii R(A; cyr,
R"-=a

j = 0, 1.

Suppose also that the bounded transformation C has the simple eigenvalue ,10 ,

RAo > a, and that the half-plane RA :;" a contains no other points of the
spectrum of C. Then for

1
K
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the transformation C + U has a unique eigenvalue A(U) in the half-plane
RA ~ a, and it is simple. It satisfies

I A(U) - Ao I ~ (2M;1 + 1) Kl! Clio (10)

if 0 ~ II C II. There are eigenvectors of C + U and (C + U)*, respectively,
belonging to A(U) and satisfying (9).

This time we take Q to be the portion of the circle I AI < r in the half­
plane RA > a. Again the contribution of the circular part I AI = r to the
integral

P u - Po = -2
1

. r (R(A; C + U) - R(A; C)) dA
7Tl Jan

approaches zero, so that we obtain

1 f'HiOO
P u - Po = 27Ti a-ioo (R(A; C + U) - R(A; C)) dA.

From the identity

R(A; C + U) - R(A; C) = R(A; C)(l - UR(A; C))-l UR(A; C)

it follows that
M20

II R(A; C + U) - R(A; C)[[ ~ I A 12 (1 ~ Moo) ,

which yields

We set
D(A) = R(A; C + U) - R(A; C).

From the identities

and

we derive

AR(A; C) = I + R(A; C)C

AR(A; C + U) = 1 + R(A; C + U)(C + U),

D(A) = A-1(D(A)C + R(A; C + U)U)

= >,-lD(>')C + A-2(U + R(A; C + U)(C + U)U).

Consequently, we infer

(A(U) - Ao) P u = -2
1

. r (A - Ao) D(A) dA
7Tl Jan

= -2
1

. r AD(A) dA - Ao(Pu - Po)
7Tl Jan

= J(C + U) U + (P u - Po)(C - ,\),
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where

J
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Again the integrand is 0(A---2), is IAI --+ 00, and J is independent of r for r
sufficiently large. Hence we find that

Now the estimate

I "a I iex;

J- --J-- 27Ti a-ien

R(A; C -T- U) dA
A .

yields
II R(A; C + U)II ~ II R(A; C)II/(I - Moo)

from which we conclude the inequality.

Remark. We always have the relation

M1 ~ 1 +!i C Ii Mo ,

but sometimes we can obtain a much sharper bound for M 1 •

4. PERTURBATION OF POWER-POSITIVE MATRICES

We wish now to apply the results of the previous section to power­
positive matrices. For this purpose we need to estimate the resolvent of such
a matrix. If C is power-positive, we shall denote by Ac its largest eigenvalue
and by gand?] the positive eigenvectors of C and C*, respectively, normalized
by the conditions

II ?] II = II g Ii = Ii Po 11
1

/
2

,

where Po = g ® ?] is the projection defined by

for all x.

THEOREM 7. If C > 0 and

M(r) = max I: R(Ao C)[I
l"l=r ,j , I'

then for AcNe < r < Ac , we have

where
B = B(C) = 34(1 + f-L(C)-l).
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Proof Let y be a given vector,

and

Then

b = TJ • y, z = (1 - Po)y = Y - bg,

(A - C)x = y.

The estimate in Theorem 5 yields

II R(A; C)z II ~ 34fL(C)-1(1 A i - AcNd--1 11 z II.

Since Lemma 2 implies that

II z!1 ~ II y II + [[ g Ii II TJ !! II y II ~ (1 + fL(C)-l) Ii y II,

we obtain the estimate for M(r) stated above.

The minimum of (Ac - 1')-1 + B(r - AcNd-1 is attained for I' = (xAc ,
where (X = (Nc + B1 j2)/(1 + Blj2), from which we obtain

COROLLARY 7a. For (X = (Nc + B1 j2)/(1 + Blj2), we have

To deal with power-positive matrices, we use the identity

COROLLARY 7b. If C ~ 0 and Cm > 0, and N = N(cm), B' = B(CIIi),
and AcN1jnt < I' < Ac , then

II C 11m - I'm 1 B'
M(r) ~ II CII - I' fL(C"') Acm - I'm + I'm - AcmN °

For example, if m = 2, and (X = (N + (B')lj2)/(1 + (B')lj2), then an easy
computation yields

Application of Corollary 6a and Lemma 2 leads to

COROLLARY 7c. If C > 0 and ex is as in Corollary 7a, and

II VII ~ 0 < 11K,
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ll"here

K
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M(I -t- AcM),

100
O=-N~) fL(C)2X~ ,

then C + U has a unique eigenvalue A(U) in the set A! ;,yAc , and A(U)
satisfies

I A(U) - Ac I ~ (1 + 2AeK)o,

and this eigenvalue is simple. There are eigenvectors x and y of C + U and
(C + U)*, respectively, in the spheres

If°< fL(C)IK, then I arg Xj ! ~ 0, where

sin 0 = KolfL(C), °~ 0 < 7T12.

We can apply Corollary 7b in a similar way to obtain a corresponding
result for power-positive matrices.

We now wish to prove a generalization of Theorem 3. For this purpose
we first derive a lemma.

LEMMA 3. If C > 0, Z F 0, I arg Zj I ~ y < 7T12 for all j, and

II Cz - fLzll ~ E,

then

IAe - fL I ~ E/(II Z II fL(C) cos y) = KE/II Z !I,
and

I! - ( • 7) C II <' 34(1 + K) E
Z 'I] - S d -." fL(C) AeO _ Nc) = K1E.

Proof Let Zj = rj exp(iOj), I OJ I ~ y < 7T12 for allj. Since

'I] • (Cz - fLZ) = (Ae - fL)('I] • z)

and
R('I] • z) = L 'l]jrj cos OJ

;> m('I]; 1) II Z II cos y,

we obtain

and now Lemma 2 implies (11).

(11)

(12)
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Now le:t u = Poz = z - (7] . z)g, so that

(C - Adu = (C - Adz = v.

Hence we have
00

U = - L A-k-1CkV
k=O

and, by Theorem 5, we find that

II u II ~ 3411 v 11/(/L(C)Ac(1 - Nd)·
Since

v = (C - fL)z + (fL - Adz,
so that

II v 11 ~ E + KE,

we obtain the estimate (12).

THEOREM 8. If C > 0, II U II ~ E, and if z is an eigenvector of C + U
such that

II zll = 1 and I arg Zo I ~ y < 7T/2 for allj, (13)

belonging to the eigenvalue fL, then

and

where K and K1 are as in Lemma 3.

In Corollary 7a we obtain conditions on U that C + U have a unique
eigenvalue in I A I ~ CXAc , and then find that its eigenvector is close to g.
In Theorem 8 we find that if C + U has an eigenvector satisfying (13) and
U is small, then the corresponding eigenvalue is close to Itc and the eigenvector
is close to a scalar multiple of g. Here U is not necessarily so small that
Corollary 7a applies, and so there may very well be other eigenvalues in
IAI~cxltc·

In the next theorem we give a sufficient condition that C + U have at least
one eigenvector satisfying (13) and with a positive component. Again the
condition may not be strong enough to ensure uniqueness of the corre­
sponding eigenvalue.

THEOREM 9. If C > 0 and 0 < y < 7T/2 and

E < fL(C)lf2 sin y/(2K1),
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where KI is as in Lemma 3, then for !i U II':; E, the matri.'''' C +- U has an
eigenvector z in the set

I. arg Zf i; y (all j).

Proof. For 0 t < 1, let C(l) ~.. C -+- tU, and let to be the least upper
bound of the tin [0, 1] such that C(T) has an eigenvector in S(y). Then to is
positive by Corollary 7c. If to < I, then C(to) has an eigenvector:.: on the
boundary of S(y). We may assume that i arg Zj! c= y. Let a= YJ . z. Then
by Lemma 3, we have

and

Consequently, we infer that

i t1Zj - tj : = I tl(Zj - at,) +- (atl - I) gj

:(; 2KI E II t
.S:; 2KI E p.(C)-1/2 g, '

by Lemma 2. This is impossible if E satisfies the above inequality.

COROLLARY 9a. If A (Cil, expUeilJ), where C > 0, and I ej " I e<
nl2for allj, k and if

2 sin(ej2) < p.(C)1/2 sin yj(2KI II C Ii),

then A has an eigenvector in S(y).

Proof. We set U ,= A - C in Theorem 9.
By means of these methods, we can obtain similar results for power­

positive matrices.

LEMMA 4. If C?~ 0, Cm > 0, z II c= I, I arg z, I :(; y < 7Tj2, and
N .= N(cm), and

'I Cz - p.z II :(; E,

then
I Ac - P. ! :(; Ej(P.(cm) cos y) =. K(cm)E,

and

Z
(

m-1 Ie) 34(1 +- K(C"'» E
(1) . z) t i!:(; ~ --"-Ac~ Acp.(cm)(1 - N)

= KI(Cn» E'
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THEOREM 10. If C ~ 0, Cm > 0, and°< y < 7Tj2, and

then for \I U I! ~ €, the matrix C + U has an eigenvector in S(y).

5. MATRICES WITH DOMINANT BORDER

In this section it will be convenient to have the indices in our vectors and
matrices run from °to N. We shall begin by determining the eigenvalues and
eigenvectors of a border matrix C, Le., a matrix such that CiI' = °for jk =1= 0.

If Cz = AZ, Z =1= 0, and A =1= 0, then for j > °we have

so that

where
N

d = L COiCiO '
1

Since Z =1= 0, we must have Zo =1= 0, and therefore Ais a root of the quadratic
polynomial

and

A = (Coo ± (C~ + 4d)112)j2.

Incidentally, it is easy to prove that

det(.\ - C) = .\N-IQ(A).

If A =, 0, then Z is in the (N - I)-dimensional subspace

Zo = 0,

Similarly, we easily compute

R(.\; C) y = (AQ(.\))-l x,
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where
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,,'
X o ~~ ,Vyo + 1\ I COkYk ,

1

N

Xj = ACjoYo + CjO I CokJ'k + )'jQ(A)
1

for} > 0. Here L' denotes the summation over all indices k =1= a,}.
If CjO =1= °for all}, then it is often convenient to normalize the matrix C.

We transform by the diagonal matrix A defined by

for } =1= k,
and set

(14)

If x is an eigenvector of C belonging to the eigenvalue fl-, then Ax is an
eigenvector of C belonging to the eigenvalue Coofl-. The matrix C is a border
matrix with

and for all j.

Hence we first focus our attention on border matrices with CjO = 1 and
CQj ?': °for all}. There is a unique positive eigenvalue Al , a unique negative
eigenvalue A2 , and an eigenvalue of multiplicity N - 1 at 0. Let us compute
the other data needed in order to apply the results of Section 3.

The positive eigenvector gbelonging to Al has the components

for } > 0,

and since Al > I, we have Ii til = to . The positive eigenvector YJ of C* has
the coordinates

for } > 0,
and

The normalization

YJ'~=I,

leads to

YJo = (1 + 4d)-l/4,

Finally we have

(15)

I AQ(,\)j iI R(A; c)iI = max(1 ,\ )2 + IAId, I ,\ I + (d - COj) -:- I Q(A) + COj i).
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On the line RA = !, the perpendicular bisector of the segment [A2, AI],
we have A - A2 = 1 A 1

2 ~ I A [/2, so that

I Q(A) [ = [A 12 + d.

Therefore we have

I A I + d 2 I A 12 + d
I Q(A)I ~ 1A12 + d ~ 2.

Furthermore, we see that

I Q(A) + COj I = 1A [2 + (d - COj) ~ I AI2 + d.

It follows that

I A I + (d - Coj) + 1Q(A) + COj I ~ I A I + d + I Q(A) I
~ 3 1 Q(A) I ~ 6 I AQ(A)I,

and conclude that

I! R(A; C)II ~ 6

We note that for t > 0, s - 0,

for RA = t.

S2 + sd ~ S2 + (tds 2 + t-l d)/2

= ((2 + td) S2 + t-l d)/2.

If we choose t as the positive solution of

(2 + td)t = I,

then we obtain

i.e., t = (-1 + (1 + d)1/2)ld,

S2 + sd ~ (S2 + d)(2 + td)/2.

Hence for RA = t, we have

I A II! R(A; C) ~ max((1 + (1 + d)1/2)/2, 3) = M l , (16)

which is sharper than the bound 1 + 611 C II obtained from the identity

AR(A; C) = 1 + R(A; C)C.

We can now apply Corollary 6b. A little computation yields

THEOREM II. If C is a nonnegative border matrix with CjO = I for all j,
and if

II U!j ~ S < 1/(6 + M 12) = 11K,
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then C -+- U has a unique eigenvalue A(U) in the half plane RA ?':~. 111is
eigenvalue is simple, and satisfies

where
t:p(k) =~ 1 -+- 35k

= (P/2)(l -+- 12k-1 / 2)

k ~;; 25,

k:> 25.

There is an eigenvector x of C -+- U, belonging to A(U), such that

if x - gII ~ Ko II gil.

If AlKo < 1, then for all} we have

and
[arg Xj [ ~ ex,

where
o ~ ex < 7T/2.

There is an eigenvector y of (C -+- U) *, belonging to A(U), such that

II Y - TJ III ~ Ko II TJ III .

If we apply Theorem 11 to the matrix (; defined by (14), then we obtain

COROLLARY lla. Suppose that C is a border matrix and that CjU =Fe 0 and
CjoCOj/C~o ? 0 for all j. If V is a matrix such that

N

I I VjkCkO I ~ 0 ! COoCju :

o

where

for all),

and M 1 is defined by (16) with

N

d = I COiCjO/ C~o ,
1

then C -+- V has a unique eigenvalue A(V) in the half-plane R(A/Coo) ?': i.
This eigenvalue is simple. If we set

Al = (1 -+- (1 -+- 4d)1/2)/2 (17)
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then there is an eigenvector x of C + V, belonging to .\(V), such that

I ~-ll :<KoC "",
00

and

for j > O.

o :s:;; IX < 7T(2,

then
for allj.

There is an eigenvector y of(C + V)*, belonging to .\(V), such that

Note that x and y satisfy

and
N

,\(1 - Ko) :s:;; L I Cokh I :s:;; 1\(1 + Ko).
o

By an easy limiting process, or by imitating the above argument, we can
obtain extensions of this result to certain infinite-dimensional spaces.

Let 'I be the Banach space of absolutely convergent series y with the norm

00

II Y 111 = L IYj [,
o

and let 1m = II* be its conjugate space, the set of all bounded sequences x
with the norm

II xII", = sup I Xj I·

If {an}, n ~ 0, is a sequence of nonzero complex numbers, and A is the
diagonal transformation defined by

for allj,

then we may denote by All and AI", , respectively, the transforms of II and I",
by A.
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COROLLARY 11 b. Suppose that C is a border matrix and that C;o 0
and CjoCo;/C~o ?: 0 for all j :?: O. and that

o < d = I COjCjoJC,~o XJ.
I

Let A be defined by (Ax)j = CjOXj for j O.
Then if V is a matrix such that

I [ VjkCkO ! Z;; (j I CooCjO !
o

where

(all j ~:;; 0),

o< 11K,

then C + V, as a linear transformation on Alen , has a unique eigenvalue A(V)
in the halfplane R(A/Coo) ~ t. This eigenvalue is simple, and is also a simple
eigenvalue of (C + V)* on A-Ill' If AIKo < ], then there is an eigenvector x
of C + V, belonging to A(V) such that

for allj,

where
o Z;; ex < n12.

We can also obtain results like Theorem 9, which may not be strong
enough to imply uniqueness. Suppose that

and

and that

i 8 ii, 8 < Tol2 for all j, k, (18)

(19)

(20)

Then a and b are measures of the dominance of the border of the matrix C.

THEOREM ]2. If C satisfies Eqs. (]8)-(20), and

8 -1 y <: nJ2, 0 < y,

sin«yj2) + 28) < sin(3yj2) - 2ab,
(21)
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then C has an eigenvector z in the convex set

S(y): zo = 1, I arg Zj I < y (allj).

Remarks. If a = e = 0, then C is a power-positive border matrix
(C2 > 0). If s = sin(y/2), then

<p(y) = sin(3y/2) - sin(y/2)

= 2s cos y = 2(s - 2s3
) > °

for °< y < 77/2. Hence (16) is satisfied for sufficiently small e and a.
Thus (21) defines a class of matrices close to power-positive border matrices,
which are sure to have an eigenvector in S(y). For y close to 0, our result
may be: considered a perturbation of the Perron-Frobenius result, while if y
is close to 77/2, the result is related to Theorem 3. Note also the maximum of <p
is attained for

sin(y/2) = 1/61/2

and is (8/27)1/2. Thus if 2ab < (8/27)1/2, then (21) is satisfied for some y
and for all sufficiently small e.

Proof. For given y, e, and rjk (j, k ~ 0) satisfying (21), let eo be the least
upper bound of the numbers such that

and such that every matrix C with I ej/e I ~ eo (all j, k) has an eigenvector
in S(y). Then eo > 0, and if eo < e, then there is a matrix C with I ejk I ~ eo
(allj, k) having an eigenvector Z on the boundary of S(y).

Let

for k ;'" 0. We may assume that CXo = 0, and CXj = y, Ij > 0, and I CXk I ~ y
for k > 0. For any m > 0, we have

N N

I A I Pm ~ I rmkPk ~ a L rOkPk'
o 0

But

I A I ~ RA = R (t COkZk)

~ I rOkPk cos(O + y),

and this implies that

pm ~ a/cos(e + y)
for m > 0.
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We set

so that

The estimate

yields
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\'

Zm I CmkZk ,
I

A. CUll -'-- ZII'

A.z j = C ill + Zj .

,v

i Zm I ~ I rmkPk ~ abrmo/cos((} + y)
1

where
sin (3 = ab/cos(() + y), o < (3 < 7T/2.

Consequently, we obtain

y ~~ arg Zj == arg((CjO + Zj)/(Coo + Zo))

:s; e+ (3 - (-() - (3) =~ 2(() + (3),
or

sin((yj2) - (}) ~ sin (3,
that is

2 sin((y/2) - (}) cos((} + y) < 2ab.

But the left-hand side is

sin(3y/2) - sin(2(} + (y/2)),

so this inequality contradicts (21).

COROLLARY 12a. If C satisfies the conditions

CjO =1= 0

] arg((CjleCkO)/(COOCjo))] ~ ()

I CUll I I C jle I ~ a I COle I I C jO I
and

,v

I I CjleCleO I ~ b I coo I I C jO I
1

(j ? 0),

(j, k ? 0),

(j :> 0, k ? 0),

(j ? 0),

and condition (20), then C has an eigenvector Z such that

Zo = Coo, (j > 0).

Clearly Theorem 12 and its corollary can be extended in the obvious way
to certain infinite-dimensional spaces.
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